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dual series equations in terms of the eigenfunctions of the Sturm-Liouville problem for 

a fourth order linear differential equation. Such dual equations are encountered when 

the method of homogeneous solutions is used to solve mixed problems. 

REFERENCES 

1. Aleksandrov, V. M., On solving a class of dual equations. Dokl. Akad. Nauk 

SSSR, Vol.210, Nol, 1973. 

2. Levitan, V. M. and Sargsian, I.S., Introduction to Spectral Theory. 

Moscow, “Nat&a”, 1970. 

3. Marchenko, V. A., Spectral Theory of the Sturm-Liouville Operators. Kiev, 

“Nat&ova Dumka”, 1972. 

4. ,Babeshko, V.A., On the theory and applications of certain first kind integral 

equations. Dokl. Akad. Nauk SSSR, Vol. 204, No 2, 1972. 
5. Tricomi, F., Differential Equations. N. Y, , Wiley, 1957. 

6. Babeshko, V. A., On an asymptotic method applicable to the solution of integ- 

ral equations in the theory of elasticity and mathematical physics. PMM Vol. 30, 

No4, 1966. 
7, Aleksandrov, V. M., Asymptotic methods in contact problems of elasticity 

theory. PMM Vol. 32, No4, 1968. 
8. Aleksandrov, V. M. and Chebakov, M. I. , On a method of solving dual 

integral equations. PMM Vol. 37, Ng 6, 1973. 
Translated by L.K. 

UDC 539.3 

ON A METHOD OF SEPARATING THE STATE OF STRESS IN SHELLS 

OF NEGATIVE CURVATURE WITH ASYMPTOTIC EDGE8 

PMM Vol. 39, Ng 2, 1975, pp. 333-341 

N, N. ROGACHEVA 

(Moscow) 

(Received September 13, 1973) 

The method of separating the state of stress is the following for shells with non- 
asymptotic edges: the total state of stress of the shell for which all the conditions 

of applicability of membrane theory are satisfied, is separated into the fundamen- 

tal state of stress and simple edge effects. The boundary conditions are hence also 

separated : the tangential conditions are satisfied because of arbitrariness of the 
membrane theory, and the nontangential conditions because of the simple edge 
effects. 

The possibility is shown in this paper of using this method to analyze shells of 
negative curvature with four asymptotic edges. The theory of the generalized 
edge effect has been constructed in Cl]. Here, the formulas of the generalized 
edge effect are derived by another method for convenience in the subsequent ex- 
position. Boundary conditions are formulated for membrane theory and the gene- 
ralized edge effect for diverse edge fixings. 

All the terminology, notation, equations and relations of shell theory are bor- 
rowed from [ 11. 
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1. Let us construct a theory of the generalized edge effect in a first approximation. 
We select the curvilinear coordinates as follows: let the a-lines coincide with a family 

of asymptotic lines along one of which an asymptotic edge passes, and the b-lines are 

orthogonal. 

The properties of the generalized edge effect can be clarified by expanding the desired 
quantities in asymptotic series, just as was done in [2]. This is associated with simple, 
but cumbersome reasoning. Omitting them, let us formulate the final results in the form 

of hypotheses. 

1. Exactly as for the simple edge effect, the desired functions for the generalized 
edge effect vary rapidly in a direction orthogonal to the edge, while along the edge they 

vary considerably more slowly 

-$++$ $f$+W 

Here W is any of the sought quantities, the displacement. force, or moments. We neg- 

lect the sought function itself and its first derivative with respect to a as compared with 

the derivative of the same function with respect to p * 
2. The greatest of the displacements is w , normal to the middle surface. The tan- 

gential displacements u and 21 are related to w thus 

I all i av 
W-Bag-Bag (1.1) 

The formulas (1.1) mean that w and the derivatives of u and z) with respect to [3 are 
of the same order of magnitude. 

3. The greatest of the tangential forces in magnitude will be T, , the normal force 
acting in the section CC = const , while T, and S are related to T, as follows: 

IaTz T t as --- 1 ar, 
B a3 17 ----- B ap -4 aci 

4, The elasticity relationships for the forces T, and S are replaced by the follow- 

ing formulas in the approximate theory of the generalized edge effect: 

“2 + YE1 = 0, w =o (1.2) 

Using the hypotheses formulated, we can consuuct a theory of the generalized edge 
effect in a first approximation by proceeding exactly as in the construction of the theory 

of the simple edge effect in a first approximation. i. e. by keeping just the principal 

terms in each equation. In particular, exactly as in the theory of the simple egde effect, 
all the quantities except those desired can be considered as functions of just the variable 

a during differentiation with respect to p . Taking account of the first formula in (1.2) 
the elasticity relationship for T1 is converted into the following: 

T, = =2(&I $- Y&J == 2Eh&, (I. 3) 

Expressing the strains in (1.2) in terms of the displacement and keeping the principal 
terms, we obtain 

(1.4) 

The largest of the bending strains is X2; the component xi should be neglected as 
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compared to x2. We write the approximate formulas for the bending strains 

(1.5) 

As follows from (1.5) and the appropriate elasticity relationships, the greatest of the 

moments is the bending moment G, . The moment G, is a consequence of the Poisson 
effect. The moments G, and II, = - H, = H are related to G, as follows: 

G, = vG2, 1 arr I aGz _---- 
B 38 A aa 

The simplified elasticity relationships for the moments become 

G, = _ 2Bhs G, = - 2Eh3 
3(1--G) x27 3(1--G) vxzl 

H = 2Eh3 r (1.6) 
3 (1 + v) 

As is seen from the last two equilibrium equations, the larger of the transverse forces is 

N,, related to N, as follows : 
1 aNz 2 8N1 

Aaa-BTfr 

We obtain the approximate equilibrium equations of the generalized edge effect 
by simplifying the equilibrium equations of shell theory [l]. The transverse forces are 
not essential in the first two equilibrium equations. We discard them ; moreover, accord- 

ing to the first hypothesis, we neglect the shear force s in the first equation as com- 

pared with the derivative of the same force with respect to p and we discard the term 

6’BN,/da as compared with ilAN.J@ in the third. In exactly the same way, keeping 

the principal terms in the last two equilibrium equations, we arrive at the following 
equations 

+;(BT,)++O, a$&&a~-kzBT,=O (1.7) 

TZ E* +G&&l, N,+$ -7- 
RZ’ 

N, = +&-(BG,) - -+$- kpG, (1.8) 

Let us convert (1.8). TO do this, we substitute their expressions in terms of the displace- 

ment according to (1.5) and (1.6) for the moments in the right side, and we obtain 

N, = _ 2Rh3 1 a 1 azlu 
3 (1 - ~2) A aa B2 a82 

or taking account of (1.5) and (1.6) 

N, =-LL (1.9) 

Thus, a system of equations has been obtained for the nondegenerate edge effect in a 
first approximation in negative-curvature shells (1.3) - (1.7). (1.9). There are no elas- 
ticity relationships for T, and S . This means that these forces are static quantities to 

some accuracy, i. e. are determined from the equilibrium equations. 

2. Using the second and third equilibrium equations in (1.7), the first equilibrium 
equation is converted into 
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Substituting their expressions in terms of the displacements in place of the forces in the 
equation obtained, then expressing W in terms of U, we obtain the governing equation 

of the generalized edge effect localiied near the edge 13 = cons~,, with respect to the 

If the displacement u has been found, the remaining unknowns of shell theory can be 
expressed in terms of this quantity by using the following computational formulas: 

(2.8 

as 2Eh r3 1 au 
~-;--/tar 

--- 
‘I au 

k Xl2 
42Rz’U 

Subseq~ntly we shall need a relations~p connecting the forces s,, T, and Ns. TO 
do this, let us convert tbe second equation in (1.7) by using the first and third. Conse- 

quently, we have 

~~itT2j+~~~~~i~~~)]-S.-0 (2.3) 

3 l All the coefficients in (2.1) can be consrdered as functions of just a, hence, the 
governing equation of the generalized edge effect can be integrated by separation of 

variables. Because of the separation of variables we obtain a second-order equation in 
CI with variable coefflcisnts which should generally be integrated by numerical methods, 
and a sixth-order equation in @ with constant coefficients. 

The governing equation can be integrated for some surfaces without relying on numer- 
ical methods. Let us examine these particular cases in greater detail: (1) the shell mid- 
dle surface is a minimal surface; (2) the asymptotic a-lines near the edge p = const 
are simultaneously geodesics. 

The coordinate lines coinciding with the asymptotic lines are orthogonal for a mini- 
mal surface, Hence, in the case (1) the normal curvatures of the a- and @ -lines equal 

zero 
(3.1) 

In the case (2) the geodesic curvature of the asymptotic a-lines is zero near the edge 
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moreover 

(since it is considered that the Gaussian surface curvature is everywhere nonzero). 
bet us write the first Codazzi equation 

k,$$=O 

Because of (3.1) and (3.2) this equation is simplified for the particular cases under con- 

sideration a BZ 
i)a Hlz ( ) 

ZZ o 

and therefore, B2 / RI, is a function of just fi. Moreover, since the coefficients of the 

first quadratic form can be considered functions of just a near the edge, we then perform 

the following change of variables : 

The edge p = const consequently, goes over into the line ?I = con&, and (2.1) is 

reduced to 
(3.3) 

Using the method of separation of variables, we find the solution of (3.3) which decreases 
with distance from the edges 

The nart of the solution included in the first braces is the edge effect near the edge 

r-j = tb in the domain to 6 qt. The solution describing the edge effect at the edge 

‘tl = qs for TV > y)s is in the second braces, If the distance between the edges is suf- 

ficiently great, so that the edge effect originating near one edge is damped out succsess- 

fully before the other, then the mutual influence of the edges can be neglected and only 

the first part of the solution need be kept in (3.4) in a computation of the edge effect 
at the edge TV = qt and only the second part near the edge 11 = qz . Hence, the boun- 
dary conditions on each edge can be satisfied separately. 

Let E vary between the limits (- 1, E) along the edge rl = ril (this can always be 
achieved by selecting the origin of the variable g). Selecting the constant c, in (3.4) 

as c, = nntl, n =LT 0, 1, 3, . . ., we obtain the solution of (3.3) as a trigonometric 
series wnose n-th term is defined by (3.4). 

As is seen from the structure of (3.3), three boundary conditions can be imposed on its 
integration at each edge q = const . The functions in the right sides can hence be ex- 
panded in trigonometric series. By satisfying the boundary conditions we determine the 
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constants Aiand Bi (i :- 1, 2, . . ., 6). 

4. Let us apply the theory of the generalized edge effect derived in Sects. 1 and 2 
for a computation of negative-curvature shells with asymptotic by the method of sepa- 
ration of the state of stress. 

In computing the state of stress by this method, the need arises to separate the bound- 

ary conditions into boundary conditions for membrane theory and conditions for the edge 
effects. 

When the shell edges are not asymptotic (cf. [l]) the membrane equations are inte- 
grated by satisfying two boundary conditions at each point of the edge. The residuals 

which hence appear in the nontangential boundary conditions are eliminated by using 

the simple edge effect. Consequently, secondary residuals are obtained in the tangential 
conditions, which turn out to be small. Examples of clamped and hinge-supported edges 

easily show that the smallness of the secondary residuals is assured by the fact that the 
tangential displacements in the simple edge effect are considerably less than the normal 
displacements. 

An asymptotic line on a negative-curvature surface is a double characteristic for the 

membrane equations, hence, only one boundary condition on each edge can be satisfied 

by membrane theory for negative-curvature shells with asymptotic edges. The residuals 

obtained in the remaining three boundary conditions can be reduced by using the gene- 

ralized effect (see Sect. 3). 

The boundary condition for membrane’ theory must indeed be selected in this case so 

that the secondary residuals, appearing because of the computation by the method of 
separation. A difficulty hence originates which is associated with the fact that only one 
of the two tangential boundary conditions for membrane theory must be conserved. By 

analogy with the scheme described above for the application of the method of separation 
to shells with nonasymptotic edges, we assume that that tangential condition must be 

kept in which the appropriate displacement or force in the theory of the generalized 

edge effect turns out to be least (it can be confirmed by direct substitution that the se- 

condary residuals hence actually turn out to be small). 

Let us examine particular cases. 
Clamped edge. The boundary conditions on the edge p r 130 are 

u == v 7: IU Z yZ E () 

Here the first two boundary conditions are tangential. Without altering the substance of 

the problem, various linear combinations of these can be made. It turns out that the sin- 
gle boundary condition for membrane theory is 

(4.1) 

since the appropriate tangential displacements in the generalized edge effect vanish in 
a first approximation because of the first equality in (2.2). 

For minimal surfaces, the curvature of the @-line equals zero (1 i .fi’, :-= 0) at the 
edge p = PO and the condition for membrane theory is simplified 

U =o, p =po (4.2) 

Simply supported edge. The boundary conditions on the edge p = PO are 
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T, = S, = G, = N, = 0 (4.3) 

The first two conditions in (4.3) are tangential. The following combination can be made 
from them: 

-- : ;E *TS -&=O 
i 1 

(4.4) 

which must indeed be taken as the boundary condition on the edge p = pa in mem- 

brane theory. In fact, the transverse force N, in membrane theory is small compared to 
the tangential forces T, and S,, hence, the left side of (4.4) differs slightly from the left 

side of (2.3)., and this latter is approximately zero in the edge effect. 
In the particular case when the edge line is a geodesic (for example the edge is recti- 

linear), the force T, is essentially greater than the force S, in the edge effect (see the 
second equation in (1.7)), and 

T, =O, f3 = fiQ 

should be taken in place of condition (4.4). 

Hinge -supported edge. The boundary conditions are 

T, -= 1.1 = w = G? = 0, B =Po 

Of the two tangential boundary conditions for membrane theory, 

T, = 0, p = I%, (4fu 

should be selected since, as is seen from (2.2) T, is less than 2Ehu in the theory of 
the edge effect. 

The boundary conditions (4.2), (4.5) (4.6) have been obtained earlier in p]. Parti- 

cular kinds of negative-curvature shells had hence been examined, for which these con- 
ditions are actually satisfied. 

It should be kept in mind that orthogonal coordinates were selected to construct the 
ap~o~mate theory of the generalized edge effect. At the same time, conjugate non- 

orthogonal coordinates p and P coincident with both families of asymptotic lines are 
more convenient for membrane theory. Henceforth, we shall use either coordinates by 

keeping in mind that the edge line is given by identical equations P = coast, a = const 
or P = cornit, 3 == %onst , in both systems. 

However, the form of the boundary conditions depends on the coordinates selected. 

Without examing the passage from one coordinate system to the other, let us write the 

boundary conditions in the conjugate (p, p) coordinates on the edge p = co& 

zLi* + 2 U~COS X -- 0 [(‘Li)] (4.7) 

Tp = 0 [(4.5), (4.6)] (4.3) 

1 a i ax k, \-I 
-- - 
.4, 82 ‘1, F - ‘Vctg x + sin X I 

T,‘.SiIlX +TpCOSy/--SE"=O[~4.4)~ (4.9) 
1 

where X is the angle between the coordinate lines. The number of the CoResponding 
boundary condftions in orthogonal coordinates is on the right within brackets, The sub- 

scripts p and P mean that the quantities refer to the conjugate coordinates. 

6. Let us discuss under which conditions will the edge problems of membrane theory 
be coRect. For simplicity in the discussion, let us consider a negative-curvature shell 
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bounded by rectilinear asymptotic lines (in this case the membrane solution is found by 
using quadratures [4]). Thedeductions obtained in this particular case are general in na- 

ture. 

The equilibrium equations in the conjugate coordinate system can briefly be written as 

$ (ANTE) = F, (x, Y, Zj, 6 (A,Til) = F, (XT Y7 Q7 S,, -x F (2) (5. l) 

Known functions of the components of the external loads X, Y, Z are in the right side 

of (5.1). After simple manipulations, we obtain differential equations for the displace- 

ment from the elasticity relationships (5.2) 

; 0-b -t up cos x) = fl CT,, T,, spll) & (U,L -t up ~0s x) =f-? CT,, T,, S,,) 

Here f, and fz are known functions of the forces. 

We examine various combinations of the boundary conditions presented in Sect. 4. 
Let the two adjacent edges be clamped, and the other two either hinged or simply sup- 

ported. This means that conditions on the tangential displacements of the type (4.7) 

are given on the clamped edges p = pO, p = pa and static conditionsafthe form (4.8), 
(4.9) on the edges p = pl, p = ~1. In this case the problem is divided into two stages. 

The first stage is the solution of the static problem, Two arbitrary functions,which appear 

because of integrating the system (5.1) are determined from the static boundary conditions. 
The second stage is the solution of the geometric problem (5.2)whose arbitrariness is de- 
termined from the conditions on the edges p = p,,, p = p,,. Under such conditions the 
problem is correct. If three edges are clamped, or the shell is clamped over the whole 

edge outline, then, as is easy to see from the solution of (5. I), (5.2) all the arbitrary func- 
tions of integration are determined from the boundary conditions. 

The membrane theory will be incorrect for all other clampings. 

For example, let us examine a shell clamped along the edge p = PO and simply (or 

hinge) supported on the three remaining edges. In this case we have three static condi- 

tions of the type (4.9) (4.8) on the edges P = P1, u = PI, P = PO and one geometric 
condition (4.7) on the edge P = PO. Integrating Eq. (5.1) and satisfying the static con- 
dition on the edges P = P1 and P z 1~0, we obtain an unavoidable discrepancy on the 

edge u = PI. In general, one static condition cannot therefore be satisfied. At the same 
time, one condition is not sufficient to determine the displacement on the edge p = 1’1, 

which signifies incorrectness of the problem. 

The same cases were also obtained when applying the method of separation to shells 

with nonasymptotic edges. It has been shown in [5] that methods exist for eliminating 
the incorrectness. It is also possible to eliminate the incorrectness in the case presented, 
but we shall not examine this question. 

Thus for the problem to be correct in the membrane formulation, not less than two 
adjacent edges must be clamped on the shell. 

The author is grateful to A. L. Gol’denveizer for constant attention to the research and 
for valuable remarks. 
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Short-wave oscillations of shells located in a certain sufficiently narrow bound- 

ary region, are investigated. An asymptotic integration procedure is constructed, 
by analogy with the methods presented in papers [l, 21. Attention is paid mainly 

to the natural oscillations of shells. but forced oscillations are also considered at 

the end of this paper. The region of the oscillations here investigated is arbitra- 

rily divided in two parts: one low frequency and the other high frequency. The 
equation of the first approximation for high frequency oscillations is the simplest, 

therefore this equation is considered first of all and the asymptotic procedure of 
integration is constructed ; afterwards this method is generalized for low frequen- 

cy short-wave oscillations of shells. 

1. In this paper the oscillations are considered to be short-wave, if they are defined 

by the equations of a rapidly varying state of stress. Moreover, the so-called quasitrans - 
verse oscillations are considered when in the equations the inertial terms relating to tan- 

gential displacements, are discarded. With these assumptions the equations are written 

in the following form (using here the notation from the monograph [3]) : 

h12 A2 w - h-’ h-’ A, c - h2 w = 0, A2 =pE-‘02EhA.,w+ (1.1) 

A2 c = 0, h12 = h2 [3 (1 - 02)l-l, A = B-l& @?a,) + 

A-‘dp (A$), 8, = A-‘8 i aa, dl, = B-l d / b’@ 

A1 = B-%5’, (BR,‘d,) + A-‘dp (/-1&Z,-l a,) 

It is assumed that the system of coordinates for the middle surface is referred to the prin- 
cipal lines of curvatures and the boundary is represented as a smooth convex line without 
corners (convexity condition will be considered later) ; the middle surface must be suf- 
ficiently smooth. Oscillations with frequencies satisfying the inequality 

3L > max (RI-l, R,-l) (1.2) 


